Get All Genomic Information By Sample IDs
Usage
get_genetics_by_sample(
sample_id = NULL,
study_id = NULL,
sample_study_pairs = NULL,
genes = NULL,
panel = NULL,
add_hugo = TRUE,
base_url = NULL,
return_segments = FALSE
)
Arguments
- sample_id
a vector of sample IDs (character)
- study_id
A string indicating the study ID from which to pull data. If no study ID, will guess the study ID based on your URL and inform. Only 1 study ID can be passed. If mutations/cna from more than 1 study needed, see
sample_study_pairs
- sample_study_pairs
A dataframe with columns:
sample_id
,study_id
andmolecular_profile_id
(optional). Variations in capitalization of column names are accepted. This can be used in place ofsample_id
,study_id
,molecular_profile_id
arguments above if you need to pull samples from several different studies at once. If passed this will take overwritesample_id
,study_id
,molecular_profile_id
if also passed.- genes
A vector of Entrez ids or Hugo symbols. If Hugo symbols are supplied, they will be converted to entrez ids using the
get_entrez_id()
function. Ifpanel
andgenes
are both supplied, genes from both arguments will be returned. If both are NULL (default), it will return gene results for all available genomic data for that sample.- panel
One or more panel IDs to query (e.g. 'IMPACT468'). If
panel
andgenes
are both supplied, genes from both arguments will be returned. If both are NULL (default), it will return gene results for all available genomic data for that sample.- add_hugo
Logical indicating whether
HugoGeneSymbol
should be added to your resulting data frame, if not already present in raw API results. Argument isTRUE
by default. IfFALSE
, results will be returned as is (i.e. any existing Hugo Symbol columns in raw results will not be removed).- base_url
The database URL to query If
NULL
will default to URL set withset_cbioportal_db(<your_db>)
- return_segments
Default is
FALSE
where copy number segmentation data won't be returned in addition to the mutation, cna and structural variant data.TRUE
will return any available segmentation data with results.
Value
A list of mutations, cna and structural variants (including fusions), if available. Will also return copy number segmentation data if return_segments = TRUE
.
Examples
# \dontrun{
get_genetics_by_sample(sample_id = c("TCGA-OR-A5J2-01","TCGA-OR-A5J6-01"),
study_id = "acc_tcga",
return_segments = TRUE)
#> The following parameters were used in query:
#> Study ID: "acc_tcga"
#> Molecular Profile ID: "acc_tcga_mutations"
#> Genes: "All available genes"
#> The following parameters were used in query:
#> Study ID: "acc_tcga"
#> Molecular Profile ID: "acc_tcga_gistic"
#> Genes: "All available genes"
#> The following parameters were used in query:
#> Study ID: "acc_tcga"
#> Molecular Profile ID: "Not Applicable"
#> Genes: "All available genes"
#> ! No "structural_variant" data returned. Error: No molecular profile for `data_type = fusion` found in "acc_tcga". See `available_profiles('acc_tcga')`
#> $mutation
#> # A tibble: 173 × 28
#> hugoGeneSymbol entrezGeneId uniqueSampleKey uniquePatientKey
#> <chr> <int> <chr> <chr>
#> 1 ZFPM1 161882 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 2 ZFPM1 161882 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 3 ZFPM1 161882 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 4 ZFPM1 161882 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 5 ZNF787 126208 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 6 PODXL 5420 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 7 CCDC102A 92922 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 8 TVP23C 201158 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 9 RINL 126432 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 10 ZNF628 89887 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> # ℹ 163 more rows
#> # ℹ 24 more variables: molecularProfileId <chr>, sampleId <chr>,
#> # patientId <chr>, studyId <chr>, center <chr>, mutationStatus <chr>,
#> # validationStatus <chr>, tumorAltCount <int>, tumorRefCount <int>,
#> # normalAltCount <int>, normalRefCount <int>, startPosition <int>,
#> # endPosition <int>, referenceAllele <chr>, proteinChange <chr>,
#> # mutationType <chr>, ncbiBuild <chr>, variantType <chr>, keyword <chr>, …
#>
#> $cna
#> # A tibble: 417 × 9
#> hugoGeneSymbol entrezGeneId uniqueSampleKey uniquePatientKey
#> <chr> <int> <chr> <chr>
#> 1 AJAP1 55966 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 2 NPHP4 261734 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 3 KCNAB2 8514 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 4 CHD5 26038 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 5 RPL22 6146 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 6 RNF207 388591 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 7 ICMT 23463 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 8 ICMT-DT 148645 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 9 GPR153 387509 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> 10 HES3 390992 VENHQS1PUi1BNUoyLTAxOmFjY190Y2dh VENHQS1PUi1BNUo…
#> # ℹ 407 more rows
#> # ℹ 5 more variables: molecularProfileId <chr>, sampleId <chr>,
#> # patientId <chr>, studyId <chr>, alteration <int>
#>
#> $segment
#> # A tibble: 210 × 10
#> uniqueSampleKey uniquePatientKey patientId start end segmentMean studyId
#> <chr> <chr> <chr> <int> <int> <dbl> <chr>
#> 1 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 3.22e6 4.75e6 -0.224 acc_tc…
#> 2 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 4.75e6 1.13e7 -0.839 acc_tc…
#> 3 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 1.14e7 1.28e7 0.174 acc_tc…
#> 4 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 1.28e7 3.59e7 -0.226 acc_tc…
#> 5 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 3.59e7 3.60e7 0.478 acc_tc…
#> 6 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 3.60e7 4.23e7 -0.226 acc_tc…
#> 7 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 4.23e7 4.24e7 0.491 acc_tc…
#> 8 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 4.24e7 4.47e7 -0.243 acc_tc…
#> 9 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 4.48e7 4.48e7 0.441 acc_tc…
#> 10 VENHQS1PUi1BNUo… VENHQS1PUi1BNUo… TCGA-OR-… 4.48e7 5.33e7 -0.238 acc_tc…
#> # ℹ 200 more rows
#> # ℹ 3 more variables: sampleId <chr>, chromosome <chr>, numberOfProbes <int>
#>
# }