Broom methods for smcure objects
broom_methods_smcure.Rd
Broom methods for smcure objects
Usage
# S3 method for class 'smcure'
tidy(x, exponentiate = FALSE, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
- x
An smcure object created by smcure::smcure()
- exponentiate
Logical indicating whether or not to exponentiate the coefficient estimates. Defaults to
FALSE
.- conf.int
A Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.
- conf.level
Level of the confidence interval. Default matches that in
smcure(conf.level=)
(typically, 0.95)- ...
Additional arguments passed to other methods.
Examples
smcure <- smcure::smcure(Surv(ttdeath, death) ~ marker, cureform = ~marker,
data = trial, model = "ph")
#> Program is running..be patient... done.
#> Call:
#> smcure::smcure(formula = Surv(ttdeath, death) ~ marker, cureform = ~marker,
#> data = trial, model = "ph")
#>
#> Cure probability model:
#> Estimate Std.Error Z value Pr(>|Z|)
#> (Intercept) 0.17534830 0.1663608 1.0540243 0.2918718
#> marker -0.07737471 0.1838592 -0.4208367 0.6738743
#>
#>
#> Failure time distribution model:
#> Estimate Std.Error Z value Pr(>|Z|)
#> marker 0.02216145 0.1296542 0.1709274 0.8642809
tidy(smcure)
#> $df_cure
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept), Cure model 0.175 0.166 1.05 0.292
#> 2 marker, Cure model -0.0774 0.184 -0.421 0.674
#>
#> $df_surv
#> # A tibble: 1 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 marker, Survival model 0.0222 0.130 0.171 0.864
#>