K-index estimation
k_index.Rd
K-index estimation
Arguments
- object
a cureit model object
- newdata
A
base::data.frame()
ortibble::tibble()
containing all the original predictors used to create object. Defaults toNULL
.- ncv
number of folds for cross validation. Defaults to
NULL
. If specified,newdata
will be ignored and cross-validated k-index will be reported.
Examples
p <- cureit(surv_formula = Surv(ttdeath, death) ~ age,
cure_formula = ~ age,
data = trial)
#> Warning: 0 of 100 did not converge.
k_index(p)
#> $k_index
#> [1] 0.5132231
#>
#> $boot_sd
#> [1] 0.01953527
#>
#> $boot_kindex_2.5
#> [1] 0.5150871
#>
#> $boot_kindex_97.5
#> [1] 0.5822562
#>
#> $boot_kindex_mean
#> [1] 0.5382193
#>
#> $boot_kindex
#> [,1]
#> [1,] 0.5498863
#> [2,] 0.5348491
#> [3,] 0.5136226
#> [4,] 0.5540027
#> [5,] 0.5574568
#> [6,] 0.5467716
#> [7,] 0.5202600
#> [8,] 0.5815434
#> [9,] 0.5871131
#> [10,] 0.5242782
#> [11,] 0.5232019
#> [12,] 0.5526659
#> [13,] 0.5243869
#> [14,] 0.5343037
#> [15,] 0.5192987
#> [16,] 0.5366065
#> [17,] 0.5201453
#> [18,] 0.5522204
#> [19,] 0.5212160
#> [20,] 0.5261992
#> [21,] 0.5400891
#> [22,] 0.5384449
#> [23,] 0.5317926
#> [24,] 0.5521411
#> [25,] 0.5506115
#> [26,] 0.5574251
#> [27,] 0.5181474
#> [28,] 0.5368782
#> [29,] 0.5224586
#> [30,] 0.5491817
#> [31,] 0.5219758
#> [32,] 0.5482820
#> [33,] 0.5362289
#> [34,] 0.5829012
#> [35,] 0.5169262
#> [36,] 0.5602911
#> [37,] 0.5365410
#> [38,] 0.5727508
#> [39,] 0.5281046
#> [40,] 0.5485364
#> [41,] 0.5679131
#> [42,] 0.5147313
#> [43,] 0.5308361
#> [44,] 0.5651296
#> [45,] 0.5219140
#> [46,] 0.5154804
#> [47,] 0.5524599
#> [48,] 0.5237921
#> [49,] 0.5696470
#> [50,] 0.5432816
#> [51,] 0.5181834
#> [52,] 0.5189333
#> [53,] 0.5202260
#> [54,] 0.5266868
#> [55,] 0.5125613
#> [56,] 0.5329621
#> [57,] 0.5158279
#> [58,] 0.5185825
#> [59,] 0.5212637
#> [60,] 0.5329167
#> [61,] 0.5294660
#> [62,] 0.5451775
#> [63,] 0.5368512
#> [64,] 0.5265215
#> [65,] 0.5321446
#> [66,] 0.5619447
#> [67,] 0.5253649
#> [68,] 0.5378376
#> [69,] 0.5213080
#> [70,] 0.5439126
#> [71,] 0.5258981
#> [72,] 0.5366972
#> [73,] 0.5340763
#> [74,] 0.5167006
#> [75,] 0.5776745
#> [76,] 0.5263458
#> [77,] 0.5713213
#> [78,] 0.5186070
#> [79,] 0.5369914
#> [80,] 0.5177848
#> [81,] 0.5284658
#> [82,] 0.5206236
#> [83,] 0.5381082
#> [84,] 0.5167573
#> [85,] 0.5189629
#> [86,] 0.5606847
#> [87,] 0.5168547
#> [88,] 0.5228434
#> [89,] 0.5544511
#> [90,] 0.5224287
#> [91,] 0.5776491
#> [92,] 0.5219854
#> [93,] 0.5971466
#> [94,] 0.5452225
#> [95,] 0.5549130
#> [96,] 0.5333350
#> [97,] 0.5714909
#> [98,] 0.5559964
#> [99,] 0.5354938
#> [100,] 0.5528301
#>